Суміжні й вертикальні кути
Геометрія
Основні властивості найпростіших геометричних фігур
Суміжні й вертикальні кути
Два кути називаються Суміжними, якщо в них одна сторона спільна, а інші сторони є доповняльними півпрямими.
На рисунку і – суміжні.
Властивості суміжних кутів
Теорема 1. Сума суміжних кутів дорівнює . (Зверніть увагу: кути, сума яких дорівнює , не обов’язково суміжні.)
Теорема
Теорема 3. Кут, суміжний із прямим кутом, є прямий кут.
Теорема 4. Кут, суміжний із гострим кутом, – тупий.
Теорема 5. Кут, суміжний із тупим кутом, – гострий.
Два кути називаються Вертикальними, якщо сторони одного кута є доповняльними півпрямими сторін другого.
На рисунку і , а також і – вертикальні:
Властивості вертикальних кутів
Теорема 1. Вертикальні кути рівні.
(Але не всі рівні кути
Теорема 2. Кути, вертикальні рівним, рівні.
Якщо дві прямі перетинаються, то вони утворюють чотири нерозгорнутих кути (див. рисунок). Кожні два із цих кутів або суміжні, або вертикальні:
і ; і – вертикальні;
і ; і ; і ; і – суміжні.